First Look at YSOs Using Closure Phases John D. Monnier¹, R. Millan-Gabet², J.P. Berger³, W.A. Traub⁴, F.P. Schloerb⁵, E. Pedretti⁶, N.P. Carleton⁴, M.G. Lacasse⁴, P. Kern³, P. Labeye⁷, F. Malbet³, K. Perraut³, and S. Ragland⁴ (Email: monnier@umich.edu) ¹Department of Astronomy, University of Michigan, Ann Arbor, Michigan ²Michelson Science Center, California Institute of Technology, Pasadena, California ³Laboratoire d'Astrophysique de Grenoble, Grenoble, France ⁴Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts ⁵Department of Astronomy, University of Massachusetts, Amherst, Massachusetts ⁶University of Michigan, Ann Arbor, Michigan ⁷LETI-CEA, Grenoble, France We report the first closure phase results for Young Stellar Objects using an infrared interferometer. The 3-telescope IOTA Interferometer is conducting a closure phase survey of Herbig Ae/Be stars, with high precision visibility and closure phase measurements made possible by the IONIC3 integrated optics combiner at H-band. Closure phases are quite sensitive to deviations from centrosymmetry, as would be expected for a tilted flared disk. For most sources, closure phases are consistent with zero indicating a high-level of centrosymmetry. Interpretation of these results depends on how resolved each circumstellar disk is and we attempt to quantify the maximum level of emission asymmetry in each source. A few sources do show signs of asymmetry and will be targets for a future aperture synthesis imaging campaign at IOTA.